High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein (sterol carrier protein-2).
نویسندگان
چکیده
Binding of fluorescent fatty acids to bovine liver non-specific lipid-transfer protein (nsL-TP) was assessed by measuring fluorescence resonance energy transfer (FRET) between the single tryptophan residue of nsL-TP and the fluorophore. Upon addition of pyrene dodecanoic acid (Pyr-C12) and cis-parinaric acid to nsL-TP, FRET was observed indicating that these fatty acids were accommodated in the lipid binding site closely positioned to the tryptophan residue. Substantial binding was observed only when these fatty acids were presented in the monomeric form complexed to beta-cyclodextrin. As shown by time-resolved fluorescence measurements, translocation of Pyr-C12 from the Pyr-C12-beta-cyclodextrin complex to nsL-TP changed dramatically the direct molecular environment of the pyrene moiety: i.e. the fluorescence lifetime of the directly excited pyrene increased at least by 25% and a distinct rotational correlation time of 7 ns was observed. In order to evaluate the affinity of nsL-TP for intermediates of the beta-oxidation pathway, a binding assay was developed based on the ability of fatty acyl derivatives to displace Pyr-C12 from the lipid binding site as reflected by the reduction of FRET. Hexadecanoyl-CoA and 2-hexadecenoyl-CoA were found to bind readily to nsL-TP, whereas 3-hydroxyhexadecanoyl-CoA and 3-ketohexadecanoyl-CoA bound poorly. The highest affinities were observed for the very-long-chain fatty acyl-CoA esters (24:0-CoA, 26:0-CoA) and their enoyl derivatives (24:1-CoA, 26:1-CoA). Binding of non-esterified hexadecanoic acid and tetracosanoic acid (24:0) was negligible.
منابع مشابه
ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT.
Microsomal acyl CoA:cholesterol acyltransferase (ACAT) is stimulated in vitro and/or in intact cells by proteins that bind and transfer both substrates, cholesterol, and fatty acyl CoA. To resolve the role of fatty acyl CoA binding independent of cholesterol binding/transfer, a protein that exclusively binds fatty acyl CoA (acyl CoA binding protein, ACBP) was compared. ACBP contains an endoplas...
متن کاملPhospholipid transfer proteins revisited.
Phosphatidylinositol transfer protein (PI-TP) and the non-specific lipid transfer protein (nsL-TP) (identical with sterol carrier protein 2) belong to the large and diverse family of intracellular lipid-binding proteins. Although these two proteins may express a comparable phospholipid transfer activity in vitro, recent studies in yeast and mammalian cells have indicated that they serve complet...
متن کاملIdentification of the peroxisomal β-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids
Dicarboxylic acids (DCAs) are -oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via -oxidation. Although it has been studied extensively where this -oxidation process takes place, the intracellular site of DCA oxidation has remained controversial. Making use of fibroblasts from patients with defined mitochon...
متن کاملThe human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters.
Peroxisomes play a major role in human cellular lipid metabolism, including the beta-oxidation of fatty acids. The most frequent peroxisomal disorder is X-linked adrenoleukodystrophy (X-ALD), which is caused by mutations in the ABCD1 gene. The protein involved, called ABCD1, or alternatively ALDP, is a member of the ATP-binding-cassette (ABC) transporter family and is located in the peroxisomal...
متن کاملIdentification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids.
Dicarboxylic acids (DCAs) are omega-oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via beta-oxidation. Although it has been studied extensively where this beta-oxidation process takes place, the intracellular site of DCA oxidation has remained controversial. Making use of fibroblasts from patients with def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 339 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1999